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1.  INTRODUCTION 
 

Remote sensing can be a valuable tool for mapping the spatial variability of 
evapotranspiration (ET) in heterogeneous environments.  ET can vary quite abruptly in space 
due to changes in the availability of water, roughness of the surface, and availability of energy.  
Eddy covariance towers measure evapotranspiration over a small footprint usually less than 1 
km2 (Kormann and Meixner, 2001).  Using them in interpolation is impossible because they are 
too sparse.  Remote sensing cannot directly measure the atmospheric boundary layer because it 
is too thin.  Fortunately, remotely sensed surface information can be used in conjunction with 
atmospheric forcing measured via surface weather stations to estimate ET flux (Laymon and 
Quattrochi, 2004). 

Different methods have been developed for measuring ET using remote sensing. 
Typically these methods are physically based although at least one empirically based technique 
has been developed consisting of training support vector machine with eddy flux data (Yang, 
2006).  The physical methods can be divided into direct methods (Fisher et al., 2008; Mu, 
2011) and the residual method. Direct methods attempt to directly calculate ET while the 
residual method finds ET by subtracting sensible heat (H) from available energy (A).  The 
residual method is an energy balance approach which takes advantage of evaporative cooling in 
order to partition the available energy between latent and sensible heats flux.  ALEXI-
DISALEXI (Anderson, 1997) is based on this but incorporates a two-source model which 
divides ET between evaporation from the soil and transpiration from vegetation.  As with direct 
methods, it requires complex modeling of atmospheric boundary layer and surface/vegetation 
along with estimation of several model parameters.  Although one-source models may not 
represent physics of ET as precisely, their simplicity can be advantageous when calibrated 
using in-situ data such as with SEBAL-METRIC (Bastiaanssen, 1998; Allen, 2011).  
Calibration mitigates inaccuracies in surface temperature retrievals due to atmospheric and 
emissivity effects. It can also reduce errors introduced by using radiant temperature when 
aerodynamic temperature is required in the model.  Lastly, calibration data provides 
information about the boundary layer temperature which is required for determining sensible 
heat (H) in the atmosphere. The equation used in the residual method is of the form: 

                                          ET = A – H = A – ga ∆T = A – ga (Taero – Ta)                               [1] 

where ET is evapotranspiration, A is total available energy from radiation, H is the sensible 
heat, ga is the conductivity of the atmosphere, ∆T is the vertical temperature gradient, Taero is 
the near surface aerodynamic temperature and Ta is the temperature at reference height in 
boundary layer.  Available energy can be estimated using long-wave and shortwave radiance 
detected by satellite sensor while ga can be inferred from surface characteristics.  Because of 
difficulties in estimating Taero and Ta, a relationship between ∆T and retrieved surface 
temperature (Ts) is assumed (Bastiaanssen, 1998):  

                                                              ∆T = a + b Ts                                                             [2] 



108 

Calibration of equation 2 consists of finding dry pixels and wet pixels on an image in 
which ∆T=H/ga information can be estimated.  This information is then used to fit the 
parameters a and b. Determining dry pixel information is typically determined by using expert 
knowledge to look for dry areas on the image and then assuming that H=A in these spots. 
Determining dry pixels in this manner can be rather difficult and depends on the skill of the 
analyst. An automated algorithm for determining dry pixels is highly desirable. 

Eddy covariance towers make a good source of data for wet pixel information but it 
has limited availability.  This means the extent of maps calibrated from them are limited to 
local areas near the stations.  Also, it is difficult to split the limited data between calibration and 
validation when only two or three locations exist in one area.  Therefore, it is also highly 
desirable to develop an algorithm in which only dry pixels are used in the calibration allowing 
eddy covariance data to be used to validate a technique before extending it to areas without 
tower data. 

In this paper an algorithm is proposed for calibrating equation 2 using only dry 
pixels.  This approach takes advantage of the relationship between albedo (α) and temperature 
(Ts) for dry pixels.  S-SEBI (Roernik et al., 2000) uses the relationship between Ts and α to 
account for the sensitivity of evaporative fraction of available energy (EF) to available energy 
itself, but it still requires wet pixel information. The method proposed here allows visualization 
of dry pixels by plotting available energy (or A/ga) against Ts.  The plot reveals a warm 
boundary with a sideways “V” pattern where the lower edge of the “V” is made up of dry 
pixels (skip ahead to Figure 2 for an example).  The points forming this lower edge can be 
found using automated techniques and used to fit parameters a and b in equation 2.  Estimations 
of ET using equations 1 and 2 can now be compared to eddy covariance data for validation.  

 
2.  STUDY AREA AND DATA 

 
 The proposed calibration method will be tested on a study area outside of Gainesville, 
FL near Waldo, FL.  In this study area two eddy covariance towers are operating with data 
distributed via the Ameriflux network at http://ameriflux.ornl.gov/.   Eddy covariance data 
consists of 15-minute averaged net radiation, ground flux, friction velocity, sensible heat flux 
and latent heat flux. Both towers are located over slash pine plantations in various stages of 
regeneration.  Donaldson had a stand age of 25 years in 2012 with canopy height of 14 m in 
2008.  Mize had a stand age of 13 years in 2012 with canopy height of 10 m in 2008.  
Donaldson tower height is 24.3 m and Mize tower height is 18.5 m which results in an average 
fetch on the order of 1 km for both.  LANDSAT TM-5 imagery captured on April 23, 2008 at 
15:30 GMT consisting of visible, Near IR, SW IR and thermal IR bands was downloaded from 
http://earthexplorer.usgs.gov/.  The thermal band is 120 m resolution and all other bands are 30 
m resolution.  Figure 1 shows a gray-scale image of visible bands along with the flux tower 
locations.  

 
3.  METHODS 

 
 The method in which the proposed calibration algorithm is applied in this study is 
SEBAL-METRIC. In a nutshell this method requires surface temperature (Ts), available energy 
(A) and atmospheric conductance (ga) for use in equations 1 and 2. (Kosa, 2011) contains 
details on computation of Ts, A and ga using LANDSAT.  Reflective radiance is used to 
calculate incoming SW radiation and albedo while thermal radiance is used to retrieve Ts. 
Although surface emissivity (ε) does vary in space, it assumed that ε = 0.97.  Often ε is 
calculated empirically using NDVI but this can produce erratic results without local calibration.  
Down-welling LW radiation is estimated using cold pixel from image.  The fraction of net 
radiation going to ground heat flux is calculated using SEBAL (Bastiaanssen, 2000).  It is 
understood that there will be uncertainties in calculating the available energy (A) but hopefully 
it will be consistent in a relative sense.  In order to find the conductance of the atmosphere (ga) 
similarity theory is applied according to SEBAL-METRIC.  The roughness length with respect 
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to heat is not needed since SEBAL defines temperature gradient between 0.1 m and 2 m.  The 
roughness length with respect to momentum (zo) is required for determining ga.  
 If it is assumed that the roughness of the surface is constant then the following 
equation can be used for dry pixel calibration: 

                                                                    H = a + b Ts                                                             [3] 
 
In order to apply our dry pixel only calibration, available energy is plotted against temperature 
to reveal the sideways V pattern described earlier.  Points in the warm boundary are found by 
dividing points into bins based on available energy.  The maximum Ts in each bin forms the 
warm boundary.  The boundary consists of a decreasing top line and an increasing bottom line 
that intersect at a threshold energy value.  Points with available energy above the threshold are 
assigned to the top line and all others are assigned to the bottom line.  This division is used to 
fit two straight lines using ordinary least squares regression.  The sum of squared errors of the 
two fits is combined and used as optimization criteria for finding the optimal available energy 
threshold value.  The bottom line is the fit for equation 3 and hereafter called the “dry line”. It 
should also be noted that a simple soil-water balance model (Tasumi, 2003) using precipitation 
and soil data was used over select “hot spots” as shown in Figure 1 to insure that bare soil 
should actually be dry. Well data also showed that the water table was not high enough to 
supply soil evaporation.  As shown in Figure 1, dry spots were visually selected in order to 
compare visual selection to the automated selection.  
 

 
FIGURE 1 

STUDY AREA NEAR WALDO, FL ON APRIL 23, 2008  
WITH EDDY FLUX TOWER AND VISUALLY CHOSEN HOTSPOTS 

 

 In areas with significant changes in obstacle heights, roughness length (zo) cannot be 
assumed to be constant.  In this case equation 2 must be used and zo must be estimated. 
Determining zo can be difficult and depends on the frequency and amplitude of the variation of 
obstacle heights.  It has been found that the height of obstacles alone can also be related to zo 
(Allen et al, 2011) which makes LIDAR data a possible source of zo.  The strength of this 
relationship also depends on the variability of heights which for vegetation relate to LAI, FAI, 
FVC, Stand Density, etc. (Tian et al., 2011; Schaudt and Dickinson, 2000).  In the absence of 
LIDAR data, a relationship between zo and α can be used (Cho et al., 2012): 

                                                              log(zo) = -16.8 α + 1.87                                                [4] 

This equation works because taller vegetation typically absorbs more light than shorter 
vegetation.  It was developed empirically using eddy covariance data from around the world.  A 
local calibration of the relationship would be preferred but local zo for calibration is not 
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available.  It should also be noted that this relationship applies to vegetation and not built up 
areas where roughness and albedo are not necessarily correlated. This will lead to errors over 
man-made surfaces. Because water has a low albedo but is smooth, it was masked out of image 
using minimum distance supervised classification and assigned zo=0.0001 m. Also, it is 
assumed that non-water pixels have a minimum zo=.001 m.  
 In order to fit equation 2, ∆Tdry=A/ga is calculated and plotted against Ts. ∆Tdry is 
equal to the temperature gradient that would be observed if the surface was dry. The cases that 
are actually dry will form the warm lower boundary. The same algorithm described above to fit 
equation 3 is now used on this data. It is important to note that it is necessary to mask out water 
during this calibration because it has very high energy and very low conductance which 
produce clusters of points far above the desired sideways V of data which significantly affects 
the fit. In addition, the relationship in equation 4 cannot really be trusted over bare/dry areas 
(especially those recently cleared and littered with debris). Therefore a variation is proposed in 
which roughness used for calibration is set to constant zo = 0.001. Of course this zo is only used 
in the ga used to find ∆Tdry. The ga used in equation 1 to produce final ET map must use zo from 
equation 4. The idea is that true bare/dry areas will have zo = 0.001 and lie on the “dry line” as 
they should. Rougher areas will now have ga lower than actual which pulls their ∆Tdry above 
the “dry line”.  Wet regions will also be pulled further above “dry line” but dry/rough areas that 
should be on the “dry line” will also be taken away. As long as there is enough smooth/dry 
pixels this will be good since it eliminates the rough/dry pixels which can’t be trusted. One 
thing to notice here is that a minority of pixels is used to fit this “dry line” and measures must 
be taken to keep corrupt pixels out. Later, these corrupt pixels might produce anomalous ET 
values in the final map, but if they are a minority they will not affect ET at the image level. 
 Eddy covariance data is used to validate the 3 calibration variations which will be 
denoted as 1) H calibration 2) ∆T calibration and 3) ∆T fixed zo calibration.  Eddy covariance 
data is notorious for underestimating fluxes because it fails to capture low frequency turbulence 
(Foken, 2008).  This paper adopts the current working solution of assuming that H and ET are 
reduced similarly so that the Evaporative Fraction (EF) = ET/(H+ET) is close to actual.  Also, 
eddy flux towers measure a weighted average of an upwind source over a footprint resembling 
a bellshape (Kormann and Meixner, 2001).  Since the area around Mize and Donaldson towers 
is not too variable, a uniform 1 km footprint is used.  It turns out that the flux footprint is 
inconsistent with the available energy (ATOWER) footprint.  In addition, ATOWER will contain 
different sources of error compared to ALANDSAT and therefore ALANDSAT will be used to 
maintain consistency.  In effect what is being compared now is EF.  In order to find predicted 
footprint EF to compare to EFTOWER, parameters must be averaged over footprint: 

                                              EFPREDICTED = 1 - 
a ga  + b Ts ga

 A
                                              [5] 

where the over bar represents the average over the footprint.  Since a and b were fit based on 
available energy (A), some of the inaccuracies of A will now be in the top and bottom of the 
second term in equation 5 and could cancel out making EF more reliable.  EF is also useful 
measure because it has been determined to be relatively constant throughout the day (Llhome, 
1999).  Therefore, a snapshot of EF can be multiplied by the daily averaged source of available 
energy such as GOES (Mecikalski et al., 2011) to get daily ET.  Producing maps of EF is as 
easy as applying equation 1 and equation 2 or 3 to maps of Ts, A and ga.  

 
4.  RESULTS AND DISCUSSION 

 
Figure 2 shows the plot of A vs Ts created for the H calibration of equation 3.  There is a fairly 
clear warm boundary producing the sideways V pattern.  In the dry areas, as the surface 
becomes darker and the available energy increases, the temperature also increases. But, once 
the surface becomes vegetated, the temperature actually decreases as available energy increases 
which might seem counter intuitive.  This is occurring because the cooling effect due to the 
increase in transpiration is greater than the warming due to low albedo of vegetation.  The 
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bottom “dry line” represents sensible heat as a function of temperature.  The validation points 
of sensible heat at the towers plotted on Figure 2 are far above the “dry line” demonstrating 
considerable error in this variation.   The reason for this is because this model neglects 
variations in surface roughness.  The slope of the dry line is equal to the conductance of 
atmosphere which increases with roughness (see equation 1).  Therefore, since the towers are 
measured over slash pines which are very rough, the relationship between H and T should have 
a greater slope as shown by straight lines passing through tower points.  Also the point in 
Waldo is over a one story building which should have a greater slope (rougher) than the “dry 
line” presumably over bare ground.  It is also interesting to note that the visually detected hot 
spots also appear rougher than “dry line”.  All of this demonstrates the importance of including 
the surface roughness in the algorithm. 
 

 
FIGURE 2 

VISUALIZATION OF H CALIBRATION VARIATION 
  

Figure 3 shows the plot of ∆Tdry vs Ts for the ∆T calibration of equation 2.  Now the 
validation points better match the predicted “dry line” because surface roughness is accounted 
for.  It is also obvious that Waldo is a bad fit because the roughness assigned to it using 
equation 4 works poorly over manmade surfaces.  Also, some of the visually detected hot spots 
are off probably due to failures with equation 4 over these cleared areas.  Figure 4 shows the 
results for the ∆T fixed zo calibration.  In this variation the eddy covariance validation ∆T 
points line up even better with the predicted dry line. Waldo and Hot Spot 2 are still off 
probably due to roughness.  Also, Google images show some level of re-growth at Hot Spot 2 
that is hard to detect from LANDSAT. Therefore non-zero ET should be used for that point 
which would bring ∆T down from what is plotted.  This shows that visually selecting dry spots 
from imagery is not the best way to find them.  It is beneficial that the zo calibration variation 
works well because it does not rely on accurate zo.  When zo is calculated from equation 4 there 
can be large discrepancies over bare/dry areas introducing errors to the minority of points used 
for calibration.  By fixing zo=0.001, rougher points will be removed from calibration data and 
this is a good thing as long as relatively smooth areas exist.  It is true that there will be errors 
due to roughness length in the final ET map but this will be ok if they make up a small area of 
the map. But on the contrary, introducing even a small number of them to the calibration could 
alter the entire ET map as demonstrated in Figure 3 which has a bias toward Donaldson.  In 
addition, areas that are considered dry based on a value such as NDVI could be assigned ET = 
0 when producing final ET map. 
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FIGURE 3 

VISUALIZATION OF ∆T CALIBRATION VARIATION 

 
FIGURE 4 

VISUALIZATION OF ∆T FIXED ZO CALIBRATION VARIATION 
 

The values used for validation ET (in latent heat units) are 237.0 W/m2 at Donaldson 
and 281.9 W/m2 at Mize.  The evaporative fraction (EF) from eddy covariance data for 
Donaldson equals 41.4% and Mize equals 49.8%.  Table 1 shows the bias and mean absolute 
errors between the validation ET and the remotely sensed ET after integrating over footprint 
using equation 5.  The validation ET is calculated by multiplying eddy covariance ET by 
remotely sensed available energy. Therefore, the errors in Table 1 do not reflect inaccuracies in 
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remotely sensing available energy but instead represent the algorithms ability to detect EF.  The 
results are displayed as ET in order to represent the effect that errors in EF have on ET.  

 
TABLE 1 

BIAS AND MAE FOR CALIBRATION VARIATIONS 
 

Variation BIAS MAE 
H Calibration 209.4 (80.7 %) 209.4 (80.7 %) 

∆T Calibration -20.2 (-7.8 %) 29.5 (11.3 %) 
∆T Fixed Zo 2.6 (1.0 %) 30.5 (11.8 %) 

 
 
The H calibration variation is clearly ineffective demonstrating the importance of 

including roughness length in the algorithm.  The retrieved ET is almost double the observed 
values.  Both ∆T calibrations produce much better results.  The ∆T fixed zo calibration seems 
too good to be true. Such a nearly perfect agreement is probably a bit of luck and warrants 
application of the algorithm to additional dates and locations.  It is also important to remember 
that some of the errors associated with the eddy covariance method did not cancel out as well 
as planned.  It is good news that the ∆T fixed zo calibration worked as well as the original ∆T 
calibration because it should be less affected by problems associated with finding zo.  
          Figure 5 is the map of evaporative fraction produced using the ∆T fixed zo calibration. 
Mapping EF gives a sense of the availability of water in the landscape.  The algorithm was able 
to distinguish areas of runoff from areas of slash pine. The built up areas are not represented 
well because of the under estimation of roughness as discussed before.  After looking at a false 
color composite, some of the other cleared out areas seem to have larger than expected EF.  
Possibly these areas are truly more vegetated/wet than it seems or maybe they are just rougher 
than predicted.  Additional ground truthing would be of great value here.  The dry pixels that 
the algorithm selected for calibration are also shown on Figure 5. Most of the points chosen are 
on the southwest corner of the map.  The limited spatial coverage of calibration points could 
reveal a potential weakness in the dry pixel calibration.  In different landscapes will suitable 
calibration points also be available?   
 

 
FIGURE 5 

EF MAP USING ∆T FIXED ZO CALIBRATION VARIATION 
 

Field scale maps such as Figure 5 could be used by managers to determine water use 
or productivity of ecosystems.  In this particular instance the effect of logging on the 
hydrologic balance could be monitored.  By looking at a time series of images the change in 
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water lost from the landscape could be quantified.  By automating the calibration, the resources 
required for processing these time series is significantly reduced.  This allows the estimation of 
monthly ET to become operational.  These monthly ET products can be input into ground and 
surface water models in order to quantify effects of land use change.  Another important 
application of Figure 5 is mapping the fraction of reference ET (EFRET).  Reference ET (RET) 
is the ET over a well-watered reference crop and is a function of climate only (Allen, et al., 
2011).  Managers can make projections of climate change and multiply corresponding RET by 
maps of EFRET to get future ET. Although Figure 5 is over a small extent and relatively fine 
resolution, extending these maps to a regional scale would help in planning the management of 
regional water supplies. 

  A simple technique for determining EF from a thermal image would be to assume 
that EF is a linear function of temperature and then calibrate the relationship using wet and dry 
pixels. (Jiang et al., 2009) did this for south Florida by finding a wet and dry temperature using 
the triangle method. The triangle method consists of plotting NDVI vs. temperature after which 
the boundaries of the triangle produce the cold (wet) and hot (dry) limits. EF for the dry pixels 
is assumed to be zero and the wet EF is set equal to potential ET using Priestly-Taylor 
equation.  In a stressed environment it would probably be necessary to find the wet EF using in-
situ data.  This simple calibration was performed using the eddy covariance data with the 
visually selected dry pixels to examine the feasibility of this approach.  The result is shown in 
Figure 6.  The resulting fit will be very sensitive to the choice of visually inspected hotspots.  
This line is also compared to the EF calculated using the ∆T fixed zo calibration technique.  The 
large scatter in EF shows that EF is related to more than just temperature.  This could explain 
why SSEbop (Senay et al., 2013), an operational algorithm used by USGS that does not 
account for roughness, did not validate well with a flux tower at Austin Carey in our study area. 

 
FIGURE 6 

EF VS. T USING ∆T FIXED ZO CALIBRATION  
WITH VALIDATION POINTS AND VISUALLY SELECTED HOTSPOTS 

 
5.  CONCLUSIONS AND FUTURE WORK 

 
The dry pixel only calibration technique proposed here is worthy of further 

investigation.  Some of the results produced here may be overly optimistic.  This is the only 
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study area where the author has applied this technique.  It is important now to apply the 
technique to additional dates and study areas.  This study also demonstrates the importance of 
accounting for roughness length in terrain with tall canopy.  Therefore it is important to 
produce reliable means of determining roughness length.  Another issue to explore is spatial 
resolution.  LANDSAT has a 16 day return period which decreases the number of clear sky 
days available in a year.  MODIS has a daily return period but has a coarser resolution (1 km 
thermal).  For water resource managers interested in computing seasonal ET losses MODIS 
would offer better temporal resolution.  Future work will investigate the applicability of the dry 
pixel only calibration to MODIS.  The problem with this is that MODIS resolution is too coarse 
to resolve dry only pixels in study areas such as the one investigated in this work.  Therefore, a 
technique must be developed to fuse LANDSAT and MODIS together in a way that dry areas 
can be resolved.  

The SEBAL method uses Monin-Obukhov similarity theory which was derived for 
homogenous landscapes.  More applicable to heterogeneous environments would be to couple 
large-eddy simulations with remote sensing (Albertson et al., 2001).  The ALEXI-DISALEXI 
algorithm cited earlier addresses this by using coarse scale spatial resolution such as GOES (5-
10 km) and then “disaggregating” this to finer resolutions LANDSAT or MODIS (Anderson et 
al., 2011).  In the future this issue would have to be addressed in the algorithm developed in 
this study.  

The advantage of using a calibration approach is that it reduces some of the modeling 
and required parameters.  The advantage of the dry pixel only calibration as presented here is 
that it does not require in-situ data which gives it the potential for creating ET maps over a 
larger extent.  This allows available in-situ data to be used for validation.  The algorithm also 
allows for automation of calibration because the end user does not have to pick out hot and cold 
spots on map.  In closing, the results produced in this paper seem to justify further exploration 
into this type of approach.  
 

6.  REFERENCES 
 

Albertson, J. D., Kustas, W.P., and Scanlon, T.M. (2001). Large-eddy simulation over 
heterogeneous terrain with remotely sensed land surface conditions. Water Resources 
Research, 37(7): 1939–1953. 

Allen, R., Irmak, A., Trezza, R. , Hendrickx, J.M.H. , Bastiaanssen, W. and Kjaersgaard, J.  
(2011). Satellite-based ET estimation in agriculture using SEBAL and METRIC. 
Hydrological Processes. 25: 4011-4027. 

Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C.R.,  Mecikalski, J. R., Schultz, L., 
Gonz´alez-Dugo, M. P., Cammalleri, C. , d’Urso, G., Pimstein, A., and Gao, F. 
(2011). Mapping daily evapotranspiration at field to continental scales using 
geostationary and polar orbiting satellite imagery. Hydrology Earth Systems Science. 
15: 223-239. 

Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., and Mecikalski, J. R. (1997). A 
Two-Source Time Integrated Model for Estimating Surface Fluxes Using Thermal 
Infrared Remote Sensing. Remote Sensing of the Environment, 60: 195-216. 

Bastiaanssen, W.G.M., Menentia, M., Feddesb, R.A. and Holtslagc, A.A.M.  (1998). A remote 
sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal 
of Hydrology. 212: 198–212. 

Bastiaanssen, W.G.M., Menentia, M., Feddesb, R.A. and Holtslagc, A.A.M.  (2000). SEBAL-
based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of 
Hydrology. 229: 87–100. 

Cho, J., Miyazaki, S., Yeh, J., Kim, W., Kanae, S., and Oki, T. (2012). Testing the hypothesis 
on the relationship between aerodynamic roughness length and albedo using 
vegetation structure parameters. International Journal of Biometeorology. 56: 411-
418.  



116 

Fisher, J.B., Tu, K.P., and Baldocchi, D.D. (2008). Global estimates of the land–atmosphere 
water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 
FLUXNET sites. Remote Sensing of Environment, 112: 901-919. 

Foken, T. (2008). The Energy Balance Closure Problem: An Overview. Ecological 
Applications, 18(6): 1351-1367. 

Jiang L., Islam, S., Guo, W., Jutla, A.S., Senarath, S.U.S., Ramsay, B.H., and Eltahir, E. 
(2009). A satellite-based Daily Actual Evapotranspiration estimation algorithm over 
South Florida. Global and Planetary Change, 67: 62–77. 

Kormann, R.and Meixner, F.X. (2001). An Analytical Footprint Model for Non-neutral 
Stratification. Boundary-Layer Meteorology, 99: 207–224. 

Kosa, P. (2011) . The Effect of Temperature on Actual Evapotranspiration based on Landsat 5 
TM Satellite Imagery (SEBAL). In L. Labedzki (Eds.), Evapotranspiration (pp. 209-
228). Rijeka, Croatia: InTech.  

Layman, C.A., & Quattrochi, D.A. (2004) . Estimating spatially distributed surface fluxes in a 
semi-arid Great Basin desert using Landsat TM thermal data. In D. Quattrochi & J. 
Luvall  (Eds), Thermal Remote Sensing in Land Surface Processes (pp. 133-158). 
Boca Raton:CRC.  

Lhomme, J. P., and Chehbouni, A. (1999). Comments on dual-source vegetation– atmosphere 
transfer models. Agricultural and Forest Meteorology, 94: 269– 273. 

Mecikalski, J.R., Sumner, D.M., Jacobs, J.M., Pathak, C.S., Paech, S.J., and Douglas, E.M. 
(2011) . Use of Visible Geostationary Operational Meteorological Satellite Imagery 
in Mapping Reference and Potential Evapotranspiration over Florida. In L. Labedzki 
(Eds.), Evapotranspiration (pp. 241-254). Rijeka, Croatia : InTech.  

Mu, Q., Zhao,M., and Running,S.W. (2011). Improvements to a MODIS global terrestrial 
evapotranspiration algorithm. Remote Sensing of Environment 115:1781–1800. 

Roerink, G., Su, Z., and Menenti, M. (2000). S-SEBI: A Simple Remote Sensing Algorithm to 
Estimate the Surface Energy Balance. Physics and Chemistry of the Earth, Oceans 
and Atmosphere. 25(2): 147-157. 

Schaudt, K.J., and Dickinson, R.E. (2000). An approach to deriving roughness length and zero-
plane displacement height from satellite data, prototyped with BOREAS data. 
Agricultural and Forest Meteorology 104: 143–155. 

Senay, G.B., Bohms, S., Singh, R.K., Gowda, P.H., Velpuri, N.M., Alemu, H. and Verdin, J.P. 
(2013) Operational Evapotranspiration Mapping Using Remote Sensing and Weather 
Datasets: A New Parameterization For the SSEB Approach. Journal of the American 
Water Resources Association 49(3): 577-591. 

Tasumi M. 2003. Progress in operational estimation of regional evapotranspiration using 
satellite imagery. PhD Dissertation, University of Idaho, Moscow, ID; 357. 

Tian, X., Li, Z.Y., van der Tol, C., Su, Z. , Li, X., He, Q.S., Bao, Y.F., Chen, E.X., and Li, L.H. 
(2011).Estimating zero-plane displacement height and aerodynamic roughness length 
using synthesis of LiDAR and SPOT-5 data. Remote Sensing of Environment, 115: 
2330–2341. 

Yang, F., White, M., Michaelis, A., Ichii, K., Hashimoto, H., Votava, P., Zhu, A. & Nemani, R. 
(2006). Prediction of Continental-Scale Evapotranspiration by Combining MODIS 
and AmeriFlux Data Through Support Vector Machine. IEEE Transactions on 
Geoscience and Remote Sensing, 44(11): 3452-3461. 


